Characterization of the mismatch repair defect in the human lymphoblastoid MT1 cells.

نویسندگان

  • Marta Szadkowski
  • Ingram Iaccarino
  • Karl Heinimann
  • Giancarlo Marra
  • Josef Jiricny
چکیده

Mutations in mismatch repair (MMR) genes predispose to hereditary nonpolyposis colon cancer. Those leading to truncated proteins bring about a MMR defect, but phenotypes of missense mutations are harder to predict especially if they do not affect conserved residues. Several systems capable of predicting the phenotypes of MMR missense mutations were described. We deployed one of these to study the MMR defect in MT1 cells, which carry mutations in both alleles of the hMSH6 gene. In one, an A-->T transversion brings about an Asp(1213)Val amino acid change in the highly conserved ATP binding site, whereas the other carries a G-->A transition, which brings about a Val(1260)Ile change at a nonconserved site. The hMSH2/hMSH6 (hMutS alpha) heterodimers carrying these mutations were expressed in the baculovirus system and tested in in vitro MMR assays. As anticipated, the Asp(1213)Val mutation inactivated MMR by disabling the variant hMutS alpha from translocating along the DNA. In contrast, the recombinant Val(1260)Ile variant displayed wild-type activity. Interestingly, partial proteolytic analysis showed that this heterodimer was absent from MT1 extracts, although both hMSH6 alleles in MT1 cells could be shown to be transcribed with an efficiency similar to each other and to that seen in control cells. The MMR defect in MT1 cells is thus the compound result of one mutation that inactivates the ATPase function of hMutS alpha and a second mutation that apparently destabilizes the Val(1260)Ile hMSH6 protein in human cells in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An alkylation-tolerant, mutator human cell line is deficient in strand-specific mismatch repair.

The human lymphoblastoid MT1 B-cell line was previously isolated as one of a series of mutant cells able to survive the cytotoxic effects of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). MT1 cells nevertheless remain sensitive to mutagenesis by MNNG and display a mutator phenotype. These phenotypes have been attributed to a single genetic alteration postulated to confer a defect in strand-specif...

متن کامل

Involvement of the mismatch repair system in temozolomide-induced apoptosis.

Postreplicative mismatch repair plays a major role in mediating the cytotoxicity of agents generating O6-methylguanine in DNA. We previously showed that a methylating antitumor triazene compound, temozolomide, induces apoptosis and that the persistence of O6-methylguanine in DNA is required to trigger the process. We wanted to test whether the latter apoptotic signal is dependent on a functiona...

متن کامل

Chemically induced mutations in mitochondrial DNA of human cells: mutational spectrum of N-methyl-N'-nitro-N-nitrosoguanidine.

We have observed a reproducible mitochondrial mutational spectrum in the MT1 human lymphoblastoid line treated with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). The MNNG spectrum was distinct from the spontaneous mutational spectrum. However, our ability to observe MNNG-induced mitochondrial mutations above the high level of accumulated spontaneous mutations was dependent on the MT1 phenotype. ...

متن کامل

Lymphoblastoid cell lines: a continuous in vitro source of cells to study carcinogen sensitivity and DNA repair

Obtaining a continuous source of normal cells or DNA from a single individual has always been a rate limiting step in biomedical research. Availability of Lymphoblastoid cell lines (LCLs) as a surrogate for isolated or cryopreserved peripheral blood lymphocytes has substantially accelerated the process of biological investigations. LCLs can be established by in vitro infection of resting B cell...

متن کامل

Mismatch repair in extracts of Werner syndrome cell lines.

Werner syndrome (WS) is an autosomal recessive disease, the phenotype of which is a caricature of premature aging. WS cells and cell lines display several types of genetic instability, and WS patients have an increased risk of developing cancer. The WS locus (WRN) encodes a protein that shows significant sequence homology to the RecQ family of DNA helicases. Because a DNA helicase may function ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 65 11  شماره 

صفحات  -

تاریخ انتشار 2005